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ABSTRACT 
This paper addresses the issue of multi-source collaborative object tracking in high-definition (HD) video sequences. 
Specifically, we propose a new joint tracking paradigm for the multiple stream electronic pan-tilt-zoom (EPTZ) cameras. 
These cameras are capable of transmitting a low resolution thumbnail (LRT) image of the whole field of view as well as 
a high-resolution cropped (HRC) image for the target region. We exploit this functionality to perform joint tracking in 
both low resolution image of the whole field of view as well as high resolution image of the moving target. Our system 
detects objects of interest in the LRT image by background subtraction and tracks them using iterative coupled 
refinement in both LRT and HRC images. We compared the performance of our joint tracking system with that of 
tracking only in the HD mode. The results of our experiments show improved performance in terms of higher frame rates 
and better localization. 
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1. INTRODUCTION 
Automatic object detection and tracking from video sequences plays an important role in modern vision-based systems. 
The applications of this technique are immense including automatic video surveillance6, aerial imagery2, sports analysis1, 
activity analysis3, etc. The ability to spatially locate targets of interest and track the moving targets over a period of time 
is of central importance in these tasks. Most of the past and ongoing research in this area has been focused on tracking 
from single static or moving camera. Recently, the research efforts have focused more on the problem of collaborative 
tracking in the distributed environment4. One aim of the vision systems employing this approach is to cover a large field 
of view for tracking multiple targets at a fixed resolution by using multiple cameras. An added advantage is that tracking 
can be performed in severe occlusions under some homography constraints5.  

A lot of modern vision system applications are highlighting the importance of both wide coverage area as well as 
sharp detail on the moving target. One example of multi-sensor object detection and tracking is in video surveillance 
tasks. Here the goal is wide area monitoring on one hand, and acquiring high-quality biometric images on the other 
hand6. To identify people at a distance, a highly zoomed image is needed. But with high zoom, only a small portion of 
the area under surveillance can be monitored. To address this problem, Zhou et al6 propose a master-slave architecture 
system. A static, wide FOV (master) camera is used to monitor wide area and detect moving humans. Upon detecting a 
human in FOV, the active narrow FOV pan-tilt (slave) camera is used to acquire high-resolution image of the human 
target and to perform tracking in narrow FOV. Their system is built using three standard PC systems for master camera 
processing, slave camera processing and pan-tilt unit control. On similar lines, Migdal et al7 propose wide area high-
resolution surveillance using a static wide FOV and an active narrow FOV PTZ camera unit. This focus-of-attention 
camera system is shown to cover a wide area for surveillance at high-enough resolution to perform moving object 
detection and tracking. It is shown in their presentation that for an equivalent level of high-resolution target tracking 
achieved by the stationary and PTZ camera system, a network of around 100 fixed FOV cameras will be required in one 
particular application setting studied by them. 

Another major application area is sports video analysis. An example application is presented by Needham et al1 for 
indoor soccer player tracking. In this domain, there is a growing interest in performing automatic play and player 
analysis. From the perspective of sports science industry, knowledge of players’ movement patterns during play is an 
important benchmark for education and training. Sports broadcast industry is also interested in generating more dynamic 
content for end-users to more closely watch the movements and tactics of their favorite players. For most broadcast 
sports, the playing field is a fairly wide area which can not be covered by single camera systems with high-enough 
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resolution. This observation is the motivation of our approach for collaborative tracking of sports players using EPTZ 
cameras. In this paper, we present a system for semi-automatic player detection and automatic tracking in the context of 
base-ball video. Our approach is domain-independent and can be applied to wide-area surveillance task; this point is 
illustrated by tracking results in outdoor surveillance application. Work presented in this paper is a step towards the 
ultimate goal of generating high resolution tracked imagery of players using single ETPZ camera.  

This paper is organized as follows: section 2 lays out the problem domain and application scope including tracking 
and background modeling algorithms used in our implementation; section 3 presents our EPTZ solution with specific 
system outline; section 4 details the results of collaborative EPTZ tracking in our application domain; finally, 
conclusions and future work is presented in section 5. 

2. PROBLEM STATEMENT AND BACKGROUND 
This paper addresses the following problem: Given the HD video data of a play on a sport field (specifically base-ball in 
our case), perform player detection and tracking generating high-resolution imagery of the desired players as picked by 
the end-user. More specifically, we deal with a practical situation of the problem formulated herein: Due to massive 
amounts of data to be transferred, the HD camera and associated bandwidth is not capable of delivering HD quality 
images (1280x720) at full frame rate. Instead, at HD Mode the camera can deliver a low-resolution image of the whole 
FOV as well as a high-resolution image of the target region. We provide a solution that works under these constraints to 
deliver high-resolution tracked imagery of the semi-automatically detected players in the field.  

Any system for player detection and tracking in sports videos has to deal with several challenging problems. The first 
problem is maintaining a wide area of coverage and a high-resolution image of the tracked player at the same time. 
These two requirements, as noted in the previous section, are at odds with each other. The second problem is 
automatically detecting the objects of interest (players) for further tracking. This issue is further complicated by the 
rather cluttered background in sports environments, owing mainly to the audiences outside the field. Apart from the 
cluttered background, another factor that contributes to further complicate the issue is the uncontrolled illumination 
changes and weather effects in the outdoor environments. Finally, once the objects of interest have been successfully 
detected spatially, an object tracking algorithm is needed to temporally locate the object in the video sequence frame by 
frame. This paper intends to address these three issues in the context of tracking moving objects in HD video sequences 
from an EPTZ camera.  

2.1. Wide Area Coverage at High Resolution 
The traditional solution for wide-area video surveillance is to set up enough number of narrow FOV static cameras in a 
collaborative network. With the constraint of obtaining high-resolution imagery of players (moving targets) in sports 
(video surveillance) application, this amounts to just scaling up the existing solutions to work on massive amounts of 
data. A solution based on simply scaling up the existing approaches is far from practical in most applications. In our 
application for baseball player tracking at HD1 resolution of 1280x720 pixels, around 16 HD cameras will be needed to 
tile the base-ball field the way it is covered by our system. This massive amount of data prohibits any existing solution 
due to the sheer volume. The requirements for data transmission and storage alone are prohibitive in modern 
applications. To address this problem, previous approaches have concentrated on developing static and PTZ cameras in 
master-slave architecture6,7. The disadvantage of that approach is that the two cameras have to be carefully calibrated to 
same world coordinate system. We address this issue in the context of modern cameras that support image outputs at 
multiple resolutions albeit with some time lag. We observe that recently, very high resolution cameras that are able to 
accommodate full frame rate video have become available in the vision research market. These cameras can provide 
more than 1Mega-pixels resolution and deliver exceptional details of the depicted scene. However, data transmission 
bandwidth and computational bottlenecks often limit the amount of video data to be analyzed at the user end for most 
existing systems. To accomplish the wide area of coverage at high-resolution, such cameras offer a mode of transmission 
that supports two video streams. One stream corresponds to a low-resolution thumbnail (LRT) of the over-all field of 
view, while the second stream delivers a high-resolution cropped (HRC) view of the target. In other words, the high-
resolution cropped image acts as an electronic pan-tilt-zoom (EPTZ) camera. Further details of our solution are provided 
in the next section. 



 

 

2.2. Object Detection using Background Modeling 
The problem of automatically detecting the objects of interest for further tracking has been widely addressed in the 
recent literature. One approach for achieving this goal is using areas of motion in the scene to discriminate them from the 
background. Towards this goal, several successful approaches have been proposed that build a statistical representation 
of the background. A brief training period is required where statistics from a few frames are used to model the 
background appearance. Once the background model has been established, the incoming frames are compared with this 
model to mark the pixels belonging to moving objects. The background model should be robust to variations in 
background resulting from multiple time-varying natural phenomena. The variations in scene background arise from 
different sources, such as smooth and sudden illumination changes, windy (stagnant) conditions resulting in high (low) 
motion of natural objects like trees, waves in water, etc. To counter this problem in a robust manner, most of the existing 
approaches for background modeling rely on statistical representations. In this representation, the random process at each 
pixel from multiple frames is associated with a probability density function (pdf). The per-pixel pdf for background 
model can be represented parametrically using a specified statistical distribution that fits the data well. Alternatively, 
non-parametric approaches could be used for this representation. This stochastic representation of the random process at 
each pixel models the various appearances of the background effectively. On the lines of parametric background 
modeling, Stauffer and Grimson8 proposed modeling the background with a mixture of Gaussians. The pixel-wise 
mixture of Gaussian approach models various forms of backgrounds effectively. Their background update method makes 
use of expectation maximization- (EM-) based framework for background learning. The background model update is 
performed at a pre-specified learning rate to dynamically adjust to changing conditions. Elgammal et al9 argued to use 
non-parametric methods for density estimation to represent arbitrary distributions in a data-driven manner. They used 
kernel density estimation at each pixel to represent different background states.  

Our background modeling technique is based on recursive Bayesian learning as proposed by Porikli et al10. In this 
approach, the background model is similar to Stauffer’s pixel-based adaptive mixture model. The recent history of each 
pixel, { }1 2 tx ,x , ,xL , is modeled by a mixture of K Gaussian distributions. The probability of observing the current pixel 
value is: 
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where K is the number of mixture components, i ,tω  is an estimate of the mixture weight of ith Gaussian in mixture at time 
t, i ,tµ  is the mean value of the ith Gaussian in mixture at time t, i ,tΣ  is the covariance matrix of the ith Gaussian in 
mixture at time t, and η  represents the Gaussian probability density function: 
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A choice of 3 – 5 for the parameter K is found to be sufficient for most application. For more dynamic scenes, more 
layers are required. In our formulation, instead of using EM for learning the parameters of the mixture, we use Bayesian 
recursive learning approach. Here, each pixel is defined as a layer of 3D multivariate Gaussians. In the RGB color space, 
each layer corresponds to a different appearance of the pixel. Using the Bayesian approach, we are not estimating the 
mean and variance of each layer, but the probability distribution of mean and variance. The background update algorithm 
maintains the multimodality (various appearances) of the background. At each update, at most one layer is updated with 
the current observation. After background model learning and update, foreground objects are detected by computing 
Mahalanobis distance of each pixel’s observed color with confident background layers. Pixels that are outside of 99% 
confidence interval of all confident layers of the background are considered as foreground pixels. Finally, connected 
components labeling is performed on foreground pixels to mark the moving targets to be tracked. 

2.3. Tracking of Detected Objects 
The problem of reliably tracking the objects of interest becomes a lot simplified once foreground regions based on 
background models have been detected, and a change detection mask at each frame is generated. In the classical object 
tracking setting, a manually initialized object is to be tracked over time in a video sequence. Whereas, in our case, the 
results of object detection after background subtraction combined with user-input are used for object initialization. Given 



 

 

two views of the scene (wide-area at low-resolution and narrow-area at higher-resolution), we highlight that joint 
tracking imposes certain unique requirements over the choice of tracking algorithms and which view to use. Depending 
on the original FOV size and amount of subsampling involved, the objects of interest could be very small to perform any 
meaningful tracking in the LRT view. On the other hand, because more data is available in the HRC view, more reliable 
tracking performance can be achieved in this view. Also, because of better resolution at the target, better object model 
update can be performed using data from HRC. Tracking in the HRC view has its own problems though. Since the HRC 
view gives a zoomed version of the object being tracked, its FOV is diminished. So, moving objects do not spend much 
time in the FOV spanned by HRC view. Also, since the object size to FOV size ratio is quite high in this view, a high-
motion tolerant tracking algorithm is needed. As far as background generation and update is concerned, there seems to be 
little choice. Maintaining a high-resolution background model at the HD resolution is a time consuming task which 
becomes prohibitive in real-time system requirements. Due to these unique requirements, we use multi-kernel mean-shift 
tracking algorithm with foreground regions mask generated through background modeling in the HRC view. Also, the 
background image generated through LRT view is maintained using HRC view. In the next section, we tie the pieces 
together in the form of collaborative tracking system. 

2.3.1. Multi-Kernel Mean-Shift Tracking with Foreground Mask 
Mean-shift is a real-time algorithm for target tracking based on object appearance model. The tracking is based on a 
robust clustering technique which does not require prior knowledge of the number of clusters or their shapes. The 
algorithm starts on the data points and at each iteration, moves in the direction of maximum gradient. Iterations end 
when the point converges to a local mode of the distribution12. As pointed out earlier, the original mean-shift algorithm 
requires significant overlap on the target kernels in consecutive frames. This condition might not be met in the high 
motion areas of sports videos. To address this issue, we use the multi-kernel mean-shift algorithm11 for tracking in the 
HRC view. In this approach, multiple kernels within a fixed radius of the original object location are initialized at high 
motion areas. Object template likelihood scores are computed at the converged points and the location associated with 
maximum score is marked as the object location.  

Given the outline of detected object from change detection mask, the multi-kernel mean-shift first forms an object 
model for matching in successive frames. The object model is a nonparametric color template in the form of W H D× ×  
matrix whose elements are 3D color samples from the object. W and H are width and height of the object respectively 
and D is the size of the history window. Let 0Z  be the initial location of the object obtained through semi-automatic 
player initialization. If the object has been tracked up to current frame, it corresponds to the estimated location obtained 
through tracking from previous frame. We refer to the foreground pixels inside the estimated target box as ( ) 1

N
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where ix  is the 2D coordinate in the image coordinate system and iu  is the 3D color vector. Corresponding foreground 

sample points in the template are represented as ( )
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 be the kernel weighted color histogram of the 

template of initialized player to be tracked using multivariate normal kernel Nk  for weighting. Let p(z) be the color 
histogram of the candidate centered at location Z and let b(z) be the background histogram at the same location. We 
construct background color histogram using only the confident layers of the background. The similarity between object 
model (template of player being tracked) and the candidate region is measured using modified Bhattacharya coefficient. 
This similarity measure includes background information: 
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where fα  and bα  are weights for foreground and background pixels. To locate the object in next frame, mean-shift 
vector at location 0Z  then becomes: 
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Figure 1.  This figure shows the original HD image in the camera as well as the two images LRT and HRC 

transferred to system for processing. 

 

where ( ) ( )* *
N Ng x k x′= − , and iw  are the mean-shift weights derived through Bhattacharya similarity defined in Eq. 

(3) and h is the bandwidth of spatial kernel. Next, we compute the probability that a single pixel ( )i ix ,u  inside the 
candidate target box centered at z belongs to the object. We compute this using Parzen window estimator on color 
distance between current target box and the object template history: 
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where hc is the bandwidth of 3D color kernel, set to be 16 in our experiments. The final combined likelihood of an object 
being at location z is measured as: 
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The kernel kN assigns smaller weights to samples farther from the center of the object template making the estimation 
more robust. Object model update is handled in the HRC tracker since we have a lot more pixels to update the object 
model at high resolution. At the time of each update, the oldest samples of each pixel of the template (at Dth slice) are 
replaced with new ones. Based on foreground segmentation, template pixels corresponding to background pixels in 
current frame are not updated. Finally, scale adaptation of the objects is performed using the foreground pixels. Let B be 
the bounding box of the object centered at estimated location z1. We define a second box O around the object center 
which has twice the area of B. The object scale is the solution of the maximization: 
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The optimal bounding box of object is stored for object localization in the next frame.  

 

3. ELECTRONIC PTZ SOLUTION 
As briefly described in the previous section, the main challenge in our high-resolution player tracking is dealing with the 
images at two different resolutions effectively. Maintaining a robust background in the wide FOV using LRT image, we 



 

 

insure wide-area coverage of our system. At the same time, tracking in the HRC image allows us to generate high 
resolution imagery of the tracked player for end-user display. Also, high resolution background image is maintained 
using information from LRT background and successive HRC images. An advantage of this multiple-resolution 
approach using the EPTZ camera is that the homography between low-resolution and high-resolution scene is trivially 
known. The high-resolution version of the target is merely from a scaled and cropped region of the low-resolution scene. 
Thus, unlike master-slave architecture of conventional mechanical PTZ camera tracking, no camera calibration step is 
required in the case of EPTZ camera-based system. 
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Figure 2.  Flow chart of the algorithm to process LRT and HRC images from camera. It also highlights the role of 

semi-automatic player initialization and collaborative tracking. 

3.1. System-Camera Interaction 
The interaction between HD camera and our collaborative tracking system is shown in Fig. 1. The camera internal 

buffer stores HD frames at each time instant. The dotted horizontal line in the center of the figure shows the boundary 
between the camera internal buffer and what it shares with the system outside. The dotted rectangle on HD image shows 
hypothetical region requested by our system and to be delivered by the camera (after an expected delay of a few frames). 
The LRT image delivered by the camera reaches our system as next frame, but the HRC image requested by the system 
might arrive after a finite amount of delay. Please note that background update is performed in LRT to enable semi-
automatic player initialization and to assist Mean-shift tracking in HRC image. The object model, however is updated in 
the HRC view only, as more pixels are available in this view and thus the object model can be updated more confidently 
with the help of background-foreground mask. An example of various image components of the system is shown in Fig. 



 

 

3. The high-resolution background image at the same resolution as original HD image is shown in (a). An LRT image is 
shown in (b), while an HRC image is shown in (c) after detection and tracking. 

(a)

(b) (c)
 

Figure 3.  Collaborative HD player detection and tracking on base-ball sequence (1280x720). (a) HD background 
maintained from the low resolution background and individual high resolution images. (b) Low resolution thumbnail 
(LRT) image of the whole FOV. Please note the very small object sizes. (c) EPTZ high resolution cropped (HRC) image 
of a detected player (pitcher) being tracked. 

 

3.2. System Architecture 
A software operational scenario of our system is shown in Fig. 2 in terms of algorithm flow-chart. Our system starts by 
grabbing the LRT image of the scene. At this time, background generation is performed, which spans a few frames 
accumulating the scene background statistics. An automatic player initialization is possible with this approach, but the 
semi-automatic approach relying on end-user input is preferred. The main reason for this approach is that the end-user 
gets to select the player they want to see more closely in a field with tens of potential players to be tracked. 

For tracking in the high-resolution view, we use mean-shift algorithm because of its real-time performance. One 
problem with the mean-shift algorithm for tracking is that the mean-shift kernel requires sufficient object overlap 
between successive frames to be tracked. There are two issues in our application domain that exacerbate this problem. 
Firstly, since the HRC image comes from a narrow FOV, the high-speed players being tracked spend very short amount 



 

 

of time in this view. Secondly, there is a finite but non-negligible time lag t∆  between the time that exact HRC bounding 
box is requested from the camera and the time when it is delivered to the outside system from camera. This time lag 
could be as high as around 10 frames. These issues call for a tracking approach that is more tolerant to object motion on 
the scale that object could leave the width of the spatial kernel entirely resulting in tracking error. Under these 
constraints, the original mean-shift algorithm will not provide good tracking in this view. This problem is overcome by 
our multi-kernel mean-shift algorithm with background information. Since multiple search kernels are initialized for 
object localization within a radius, the multi-kernel approach is found to be a lot more tolerant to frame delays and high-
speed motions in narrow FOV images.  

Once tracking has been performed, bject model update is handled in the HRC tracker since we have a lot more pixels 
to update the object model at high resolution. At the time of each update, the oldest samples of each pixel of the template 
(at Dth slice) are replaced with new ones. Based on foreground segmentation, template pixels corresponding to 
background pixels in current frame are not updated. Finally, the scene background image generated through LRT image 
is updated based on new HRC information and object location.  

49 320180 250

325 438355 390

443 458 480 542  
    Figure 4.  Collaborative HD player tracking in HRC view on base-ball sequence (1280x720). EPTZ tracking result 
images for high resolution display at end-user side with corresponding frame numbers. 

 

4. RESULTS 
We have tested our collaborative object detection and tracking system on a few video sequences. Results are presented 
on an HD video sequence example from the EPTZ camera capturing baseball game. Experimental results from an 
outdoor video sequence are also presented. The baseball sequence shows a lot of background noise due to audiences 
constantly moving, cameras flashing and other time varying illumination changes. Also, several scenes of occlusion are 
present which coupled with the fact that uniforms of several players appear the same present major problem in robustly 
tracking the object over time. Fig. 4 shows HRC images from a player being tracked. Please compare the amount of 
high-resolution information in these images with that of Fig. 3(b). It is apparent that our collaborative tracking approach 
presents a lot sharper details on the tracked target albeit at the same computational cost of dealing with much less amount 
of data. Please note also the robustness of tracking system to object shape deformations (frame 325), occlusions (frames 
458 and 480) and scale changes (between frames 49 and 443).  



 

 

Results from outdoor video sequence are presented in Fig. 5. The high-resolution background image is displayed in 
(a) which is the same size as HD image in camera. A low resolution thumbnail image is shown in (b). Different images 
from a tracking situation are shown in (c). All images are shown to the scale.  

(a)

(b) 1051903 917835(c)
 

Figure 5.  Collaborative HD human tracking in outdoor environment. (a) HD background image maintained through 
low resolution background and individual high resolution cropped images. (b) Low resolution thumbnail (LRT) image of 
the whole FOV. (c) EPTZ tracking result images for high resolution display at end-user side with corresponding frame 
numbers. 

This video sequence also underlines the robustness of collaborative tracking system to changes in object scale as 
object moves farther from the camera, as well as severe occlusion. The automatic detection system based on background 
generation is also robust to gradual and sudden illumination changes due to weather conditions to a certain extent. 
Finally, we present the results of system performance in terms of average processing times per frame. These results are 
reported in table 1 for our collaborative detection and tracking system. For comparison, we also report the results of 
processing the original frames in HD resolution. As can be seen from this table, the collaborative tracking framework in 
EPTZ scenario, results in performance improvement of more than an order of magnitude. 

Table 1.  Average per frame processing times for tracking in our collaborative solution as compared to HD only tracking. 

 Collaborative LRT+HRC HD Only 

Background Update 50 mSec. 800 mSec. 

Tracking 20 mSec. 25 mSec. 

Miscellaneous 5 mSec. 10 mSec. 

Total 75 mSec. 835 mSec. 



 

 

 

5. SUMMARY AND CONCLUSIONS 
In this paper, we have addressed the issue of detecting and tracking objects of interest from HD video sequences. The 
approach is motivated by modern HD cameras with special mode of operation to conserve transmission and processing 
bandwidth. In this mode of operation, the camera transmits a low resolution thumbnail image of the whole filed of view 
at significantly less resolution as compared to the HD image it captures. In conjunction with that, these cameras provide 
a high resolution cropped image from a significantly less FOV. This electronic pan-tilt-zoom (PTZ) setting effectively 
lets the camera perform as a combination of a wide FOV static camera and a narrow FOV active camera unit. We present 
a background generation and object tracking system based on this operational scenario for high frame-rate object 
detection and tracking. Experimental results are reported on an HD sequence from baseball video, and outdoor video 
sequence. Future work will focus on computationally efficient means for generating and updating high-resolution 
background. Also, the issue of tracking in low-resolution in conjunction with high-resolution tracking needs to be 
explored. 
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